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Chiral nematic liquid crystals in cylindrical cavities 
A classification of planar structures and models of non-singular 

disclination lines 

by J. BEZIC? and S. ZUMER* 
Physics Department, University of Ljubljana, 

Jadranska 19, 61 11 1 Ljubljana, Slovenia 

A part of homotopy theory is applied to classify planar structures in chiral 
nematic liquid crystals confined to cylindrical cavities. The resulting classification is 
exact in the approximation of undeformed chiral nematic surfaces. Within this 
approach the relative stability of possible planar structures with surface and bulk 
disclination lines is discussed. The number and the shape of these disclinations, 
which in some cases form spiral structures, are predicted. Further approximate 
analytical expressions for non-singular director fields close to disclination lines with 
integral strength are introduced. Our predictions, which are also in agreement with 
some previously suggested pictures of such director fields, are used to improve 
stability considerations of the confined planar chiral nematic structures in tubes and 
droplets. 

1. Introduction 
Here we are going to discuss restricted chiral nematic phases with planar chiral 

nematic surfaces [ 11. Observations of polymer dispersed chiral nematic (N*) droplets 
with planar anchoring conditions [2,3] showed that in N* phases with negative 
dielectric anisotropy, the applied electric field stabilizes planar structures. In the 
experiment with N* phases confined to tubes El], the anchoring was homeotropic. 
Planar structures were obtained after a phase transition from a smectic A phase to the 
N* phase. In tubes, more disclination lines were observed than in droplets. 
Furthermore, the observation of structures in tubes shows the difference between 
singular and non-singular (escaped) director fields around disclination lines. 

Within the homotopy theory, it was shown [4] that in the N* phase only 
disclination lines, but not point defects, are possible. The description of these 
disclination lines is consistent with a classification of N* disclination lines into three 
classes [5,6]. Only two of them: x and A disclination lines are considered in this 
contribution. x disclination lines are singular in the director field n, but are not singular 
in the field corresponding to local directions of the helical axes. 2 disclination lines are 
singular in the field of helical axes but are non-singular in the director field [4-61. From 
the topological point of view, there is one x disclination line for every integer and half 
integer: 0, + 1/2, - 1/2, + 1, - 1, + 3/2, - 3/2, + 2,. . . . These numbers (denoted by the 
letter s) are called strengths of the disclination lines. The x disclination lines can be 
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1696 J. Bezii: and S. Zumer 

combined using the summation rules for the line strength numbers. (The relationship 
(mapping) between the listed numbers and x disclination lines is usually referred to as 
an isomorphism.) From the topological point of view, there are also many A 
disclination lines, but in our model structures, only + 1/2 and - 1/2 ;1 disclination lines 
can be found. These two A disclination lines are the most common and in [Sj and 161 
are called + A  and -2, respectively. 

If there are only x disclination lines present, the N* surfaces are everywhere well 
defined (non-degenerate N* surfaces) with the director field everywhere tangential to 
them and with the helical axis as a local normal. Therefore, such a director field can be 
described as a two dimensional (2D) nematic. In the case of an undeformed N* phase, 
the N* surfaces are planes and the director field in these planes is homogeneous. 

The structures singular in director fields are energetically demanding, as was shown 
for nematic structures [7], therefore close to x disclination lines, structures with non- 
singular director fields (escaped structures) may be more stable. As follows from the 
homotopy theory [4,S], the escape is possible for disclination lines of integral strength. 
For disclination lines, where strength is a multiple of 2, a structure non-singular in 
either director field or helical axis field was predicted, but no model structure was 
proposed [4,8]. Qualitative pictures of some x disclination lines with non-singular 
director field are presented in [6,9, lo]. 

In $2  of this contribution, we first model the possible 2D nematic strcutures which 
can occur in non-degenerate N* surfaces. Next, in $3,  using symmetry arguments 
similar to those used in [ 111 for disclination lines in nematic phases, we construct a 
three dimensional planar N* structure confined to a cylindrical tube. In $ 4, we try to 
improve results obtained in the approximation of non-degenerate N* surfaces by 
introducing escaped cores for x disclination lines. Examples of structures constructed 
following the steps described in $ 2 4  are presented in $ 5. In $ 6, we discuss our results, 
compare them with available experimental results and underline the similarity between 
planar structures in droplets and tubes. 

2. Nematic circles with strong anchoring on the circumference 
In the homotopy theory, disclination lines in a three dimensional space and point 

defects in a two dimensional space are classified by encircling them with loops [12] and 
mapping them into an order parameter space [S]. Maps of loops are again loops or 
curves connecting equivalent points in the order parameter space. The 2D nematic 
phase is usually given as a straightforward example for homotopy groups [S]. Taking 
into account the n = - n symmetry of the director fields, we find that its group of point 
defects is isomorphic to integers 

711(P1)NZ. 

The space Pi is the circumference of a circle with radius equal to one and with opposite 
points of the circumference identified (see figure 1 (a)). n1(P1), the first homotopy group 
of the 2D nematic phase, is therefore the group of curves on the circumference. Some 
examples with corresponding defect strengths are: a curve connecting two opposite 
points (s= 1/2) (see figure 1 (c)), a curve connecting a point with itself (s= 1) (see figure 
l (b))  and a curve winding once around the circle and thereafter ending in a point 
opposite to its starting point for s = 3/2. All these curves must be drawn in the positive 
direction [S]; that is, curves of equal length drawn in the opposite direction correspond 
to defects with negative strength. 
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Chiral nematics in cylindrical cavities 1697 

(4 (4 
Figure 1. (a) The P' space representing all possible orientations of the director n in the 2D 

nematic. The arrow connects a pair of identified opposite points. (b) The curve connecting 
a point with itself, representing the s= 1 defect. (c) The curve connecting a pair of opposite 
points, representing the s = 1/2 defect. 

s = 1 / 2  s = l  

(4 

Figure 2. Two pairs of corresponding bulk and surface defects. The similarity of the director 
field around bulk and surface s= 1 defects can be seen. (a)  The pair of s= 1/2 bulk and 
s= 1 surface defects-parallel anchoring. (b) The pair of s=  1 bulk and s=  2 surface 
defects-homeotropic anchoring. 

The above conclusions are valid for defects in the bulk of a 2D nematic phase; that 
is, only defects in the bulk can be completely surrounded by a curve forming a loop (for 
examples of surface and bulk defects see figure 2). Defects on the surface can be 
surrounded only on the nematic side of the surface, that is from one point to the other 
point of the surface [13,14]. In the case of strong anchoring, there is only one 
orientation of the director at the surface allowed, and therefore both points on the curve 
which begin and end on the surface are mapped either into one point of into two 
opposite points on the circumference. Thus the curves connecting surface points of a 
2D nematic are curves on the circumference P1 corresponding to a first homotopic 
group. So we conclude that in the case of strong anchoring any surface defect can be 
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1698 J. Bezik and S .  Zumer 

transformed into a corresponding bulk defect and vice versa (see figure 2). The only 
difference between a surface defect and a corresponding bulk defect is their strength. 
While the defect is moved to the surface, the surrounding director field is compressed so 
that the surface defect has twice the strength of the bulk defect but occupies only half its 
volume. In figure 2 there are two pairs of defects illustrating this effect for parallel and 
homeotropic surface anchoring. A bulk defect with strength s = 1/2 is transformed into 
a surface defect with strength s = 1, and a bulk defect with strength s = 1 is transformed 
into a surface defect with strength s = 2. In these special cases given in figure 2 around 
both the surface s = 1 defect and the bulk s = 1 defect, there is a radial structure. 

The described equivalence of surface and bulk defects cannot be taken for granted. 
A counter-example can be found with defects in the polarization vector p in the smectic 
C* phase. The space P1 of the 2D director must be substituted by S', which is the 
circumference of a unit circle with no points identified. Where only one direction of the 
polarization vector p is allowed at the surface, the statement for the director n must be 
modified. As a result, allowed bulk defect strengths + 1, - 1, + 2, - 2, + 3, - 3,. . . and 
surface defect strengths +2, -2, +4, -4, +6, -6,.. . are obtained. But in the case 
where on the surface both directions p and - p are possible (as in chevrons [l5]) there 
are additional surface defect strengths + 1, - 1, + 3, - 3, + 5,  - 5 , .  . . allowed. None of 
these additional surface defects (disclinations) has a corresponding bulk defect 
(disclination), because bulk defects with strengths + 1/2, - 1/2, + 3/2, - 3/2, + 5/2, 
- 5/2,. . . are not allowed for any vector field. 

Using the equivalence of surface and bulk defects, the possible structures of a 2D 
nematic phase with strong anchoring on its 'surface' can be classified. Each structure is 
defined by defects occurring in the director field. In the case of uniform anchoring 
(along the circumference, the anchoring axis does not change its orientation relative to 
the surface normal), the director field on the circumference is mapped into a curve 
connecting a point with itself (s= 1) on P'. Therefore the sum of bulk defect strengths, if 
there are no surface defects, is equal to one 

Q y k =  1. (2 4 
i 

According to our definition the strength of any defect that moves from the bulk to the 
surface is multiplied by two. Thus in the case of combined bulk and surface defects the 
expression (2 a) is generalized 

(for illustrations see figure 3) or in the case of N holes in the 2D nematic phase with 
strong parallel anchoring on their circumference 

The expression could be also easily generalized to a non-uniform surface of arbitrary 
shape with varying angle between surface normal and the anchoring axis. The only 
limitation is strong anchoring. 

It is known that the free energy of a point defect in a bulk is proportional to the 
square of its strength [ S ] .  The same is true for surface defects. That is, when a defect is 
moved to the surface, the derivatives of the director field are multiplied by two and so is 
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(4 (4 

Figure 3. Five combinations of bulk and surface defects in a circle with tangential boundary 
conditions. The positions of defects are marked with black circles with radii proportional 
to bulk defect strengths. Using the same description as in expression (24, the combinations 
are: (a) (l;), (b) (-2; 3,3), (c) (- 1; 2,2), (d )  (2, - 112, - I/&), and ( e )  (2; - 1, - 1). 

the defect strength. On the other hand, the size of the space occupied by surface defects 
is only half of the size corresponding to bulk defects (see figure 2). The free energy of a 
structure with point defects is thus approximately proportional to the sum of the 
squares of defect strengths 

where one half in front of the second sum reflects the difference between the two kinds of 
defect. To predict the most stable structures, we choose those allowed combinations 
with the lowest sum of defect strength squares. Such combinations are 

(1/2, 1/2;), (;1, I), (- 1/2,1/2,1/2,1/2;), (- 1/2;1, L l ) ,  
(1;h (;2), (- 1,1/2,1/2,1/2,1/2), (- 1;h 191, I), (- L1, l;), (- 1;2,2), (2, - 1/29 - 1/2;), 

(2;-1,-1),(1,1,-1/2,-1/2;),(1,1;-1,-1) )..., (3 b) 
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1700 J. Bezik and S .  Zumer 

where defect strengths before the semicolon belong to bulk defects and those after the 
semicolon belong to surface defects. The values of the free energy of these structures are 
proportional to 

0.5, 1, 1, 1.75, 1, 2, 2, 3, 3, 5, 4.5, 5, 2.5, 3 ,..., 

respectively. The first two combinations are variations of the planar bipolar structure 
and the fourth and the fifth are variations of the planar monopolar structure [16]. 
Some of the presented combinations will be useful for the description of planar N* 
structures in tubes and some of them are presented in figure 3. 

3. disclination lines in planar chiral nematic structures 
In the case of planar structures confined to droplets and tubes the confining surface 

cuts circles out of N* planes. In each circle, there is a 2D nematic director field which 
can, in the approximation of non-degenerate N* surfaces, be described according to the 
above predictions. The whole N* structure within a tube can thus be constructed by 
simply making a stack of relatively rotated 2D structures. Such a rotation satisfies the 
boundary conditions for the director field and in the largest possible part of the tube 
realizes the intrinsic N* twist. Depending on the symmetry of the initial 2D structure, 
the formation of the N* twist is expected to induce deformations in this 2D structure. 

Let us try to obtain a formal description of the above construction. We first 
introduce the required quantities: n(r)-the orientation of the director at the point with 
position vector r and R(yo) is the rotation matrix for an angle yo  around the z axis, 
which is also the symmetry axis of the tube. All quantities of the 2D nematic have the 
abbreviation ‘nem’ as a subscript. To rotate a 2D nematic structure in a N* plane 
through an angle (po, the coordinate system must first be rotated through this angle that 
is equivalent to the rotation of the position vector for the angle - y o  

R(-Yo)r, 

then the director field is evaluated in this rotated coordinate system 

and the resulting director field is transformed back to the original coordinate system 

A formal description of the above construction is thus 

4 r )  = R(Yo)nnem(R( -  YO)^), (4 4 
where yo must, close to the z axis, satisfy the condition that the twist of the director field 
from one N* plane to the other is the intrinsic N* twist qz defined by the N* wave 
number 4. Along the symmetry axis of the tube (the z axis) there is either a x disclination 
line with strength so, or there is no disclination in the case of sO=O. 

In the first step we limit our description to the vicinity of the z axis where we can 
neglect the effect of the surface constraints given by the expression (2 b) and describe the 
director field of the 2D nematic as a linear combination of the coordinate vectors ex and 
ey with R,,, being the angle between the director nnem and the x axis of the chosen 
Cartesian coordinate system [ 1 11 

nnem = cos Rnemex + sin Rnemey 

%em = SOY + 00. 
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Here the angle Ro is a constant and 

cp = arctan (y/x) ( 5  c)  
is the polar angle in the cylindrical coordinate system measured with respect to the x 
axis of the Cartesian coordinate system. Using expressions (4) the N* planar structure 
close to the centre of the tube is expressed as 

n = cos Re, + sin Re,, 

R = so('P - cpo) + 'Po + Ro. 

sz - R,,, = qz. 

(6 4 
(6 b) 

(7 4 
The difference between Qnem and R must be equal to the intrinsic N* twist 

By substituting expressions (5) and (6 b) into expression (7 a), a condition for angle qo is 
obtained 

(1 - s o b 0  = 4z. (7 b) 

q0=4z / ( l - s0 )  for so#l. (8 4 

For so # 1 the condition (7 b) can be rewritten as 

For so= 1, the structure is axially symmetric around the z axis so that condition (7 b) 
cannot be satisfied. Therefore, for a so = 1 disclination line at the tube axis, no N* twist 
can be formed by rotating the 2D nematic structure from one N* plane to the other N* 
plane. Thus, the so = 1 disclination line must be displaced so that there is no disclination 
line along the tube axis similarly as in the so = 0 case. The expression 

is not a solution of condition (7 b) for so = 1, but for so =0, reflecting the fact that there is 
no disclination line at the tube axis. For so # 1, substituting our approximate solutions 
for the rotation of the N* structure (expression (8 a)) back into expression (6), the well- 
known expressions for disclination lines along the z axes (or the undeformed N* 
phase structure for so = 0) are reproduced [5 ,  61. 

Let us now find a way to satisfy the surface constraints described by expression (2 b). 
For cases corresponding to so # 1, with (or without) a disclination line along the z axis, 
additional disclination lines must be added to the central disclination line. The 
positions of these additional disclination lines must be consistent with the symmetry of 
the central disclination line. Therefore, these additional disclination lines are s = + l /2  
and s = - 1 /2 bulk disclination lines or s = + 1 and s = - 1 surface disclination lines, as 
will be shown using expressions (9H11). In expression (9), the symmetry of disclination 
lines with strength so is expressed in terms of rotation angles \clo that leave the structure 
unchanged 

Using the ansatz (6 a), we find that the difference between the angle R on the left hand 
side and the angle R on the right hand side of expression (9) must be a multiple of n. 
Thus, an expression for the angle t,b0 is 

(104 

$0 = h/( 1 -SO[ ,  so # 1. (10 b) 

cpo = qz for displaced so = 1 (8 b) 

n(r) = R($o)n(R( - +o)r). (9) 

S O C ~  + qz + k ~ = ~ o ( q  - $0) + $0 + qz, k=O, + 1, - 1, + 2 ,  - 2 , .  . . 
and the angle $,, is for so # 1 given by 
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1702 J. Bezii: and S. Zumer 

The smallest non-zero I,90 that preserves the disclination line (with strength so) 
unchanged is obtained for k = 1. Therefore, the number of additional disclination lines 
of equal strength needed to preserve the symmetry of a disclination line with strength 
s o # l  is 

M=27~/1,h,(k= 1)=2~1-s0~.  (104 
If additional disclination lines are bulk disclination lines; using the expressions (2 b) and 
(IOd) we find that their strength s is 

s=(l-s0)/(211 -sol)= + 1/2, - 1/2, (1 1) 
and similarly, if they are surface disclination lines their strength is either + 1 or - 1. 
Two examples, so = 0 and so = 2 will be discussed in detail in 5 5 (see figures 6 and 8), as 
well as more exotic cases with so = - 1 and - 1/2 (see figures 9 and 10 of 0 5).  

For the so = 1 central disclination line, we find that M = 0 directly from expression 
(2 b). The corresponding structure, where the central disclination line is displaced from 
the centre towards the surface and twisted (see expression (8 b)) is in figure 7. 

The allowed structures in spherical droplets are very similar to the structures in 
tubes. In addition to the rotation of 2D nematic circles needed in tubes, the contraction 
of these director fields towards the poles of droplets, where circles converge to points, is 
needed. 

4. Disclination lines of integral strength. Non-singular director fields 
As was shown in [17], the non-singular cores for x disclination lines can be 

reasonably well-described by a director field obtained by an approximate minimization 
of the Frank free energy. Here we briefly repeat the evaluation, so that we will be able to 
show how the 1 disclination lines appear. The first step in the minimization is the 
description of the director field around x disclination lines, using our approximation of 
non-degenerate N* surfaces. In cylindrical coordinates we find 

n = cos Re, + sin Re,, 
with 

R =(so - 1)fp + qz +a,. (12) 
Here, the expression for the R differs from expression (6) because of the transition from 
a Cartesian to a cylindrical coordinate system. 

In the second step, the angle Y is added (see figure 4) to enable the tilt of the director 
out of the N* planes 

(13) 

This ansatz is then substituted into the Frank free energy. To simplify the resulting 
expression for free energy, the free energy is integrated over cylindrical coordinates rp 
and z and minimized over Y as a function of p to obtain 

n = cos R sin Ye, + sin R sin Ye, + cos Ye,. 

In expression (14), so is the strength of the x disclination line and rEQ is the radius of the 
escaped core (upper index e for escaped). Two model structures (so = 1 and 2), described 
by expressions (12H14), were first introduced in [17]. Here, we describe in detail 
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1704 

Figure 5. In director non-singular structures for x disclination lines of strengths (a) s= 1, 
(b) s= - 1 and (c) s=2. In these figures the coordinate system is defined with the z axis 
parallel to the ,y disclination line and x and y axes normal to this x disclination line and 
parallel to the N* planes. The full lines with two arrow heads show where the (x, y )  cross- 
section is cutting the (x,z) cross-section. Arrows with dashed lines are pointing at I 
disclination lines. In the (x, z )  cross-section points of the in director non-singular + 1/2 and 
- 1/2 1 disclination lines can be seen where the director is perpendicular to the (x, z )  plane. 
In the ( x , y )  cross-sections, points of these I disclination lines can be seen where the 
molecular director is normal to the radial direction. 
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Chiral nematics in  cylindrical cavities 1705 

examples of the x disclination line with so = 1 ,2  and - 1. In figure 5 there are one x-z 
and two x-y cross-sections for each case calculated using expressions (12H14). The z 
axes are those along x disclination lines. Out of plane director field is represented by 
'mails' [5, 171. Several common features of escaped structures can be observed. 

(i) First, at the centre of each escaped structure the director field is everywhere 
parallel to the z axis. 

(ii) Second, in the region where N* planes become degenerate, that is where the 
director field tilts out of the N* planes (which are parallel to the x-y plane), the 
+ 1/2 and - 1/2 1 disclination lines appear. These /1 disclination lines wind 
around the z axis and cross the x-z plane in the last point on the N* plane 
where the director is still parallel to the eq unit vector (Y = n/2 and C2 = n/2, see 
also figure 4). On each x-z cross-section presented in figure 5, there are four 
such points. On the right hand side of the x-z cross-section, the lower point 
corresponds to the + 1/2 1 disclination line and the upper one to the - 1/2 1 
disclination line. 

(iii) The third common feature of escaped structures is that the number and the 
form of 1 disclination lines depends on the symmetry of x disclination lines. 

The so = 1 x disclination line is, as we have seen in $ 3,  a particular case which must 
be treated separately. In planar N* structures, confined to tubes, these disclination 
lines are not along the symmetry axis of the tube, but nevertheless they have local axial 
symmetry (see figure 5 (a)). Therefore, 1 disclination lines which encircle so = 1 x 
disclination lines are circular. These circles are localized in N* planes where the 
director field is concentric and coincides with the circular field lines with the smallest 
radius. 

For cases with so # 1, the angle qo in expressions (8) gives the rotation of the director 
fields around x disclination lines ( z  axes of the tube) as a function of the z coordinate. 
The expression (10 b) describes the symmetry of director fields surrounding the cores of 
x disclination lines. 

The so = - 1 (q0 =qz/2, ij0 = k n/2) structure (see figure 5 (b)) rotates around the x 
disclination line according to expression (8 a). Because the angle $o from expression 
(10 b) is a multiple of 4 2 ,  there are in each N* plane four points where a 1 disclination 
line crosses the N* planes. Therefore, I I  disclination lines form a fourfold spiral rotating 
in the same sense as the N* twist. The existence of four 1 disclination lines obeys the 
symmetry of a disclination line, but because of the fact that two of these four lines are 
+ l /2  and two are - 1/2 1 disclination lines, the symmetry of the so = - 1 x disclination 
line is broken. 

The so = 2 (qo = - qz, $o = kn) structure (see figure 5 (c))  is rotated in the opposite 
sense to the intrinsic N* twist, that is by an angle qo = - qz. Because the angle $o from 
expression (lob) is a multiple of n, there are in each N* plane two points whe;.e a J. 
disclination line crosses the N* plane. Thus, a pair of one + 1 /2 2 disclination line and 
one - l /2  1 disclination line forms a double spiral rotating in the sense opposite to the 
N* twist. 

5. Examples of planar chiral nematic structures in tubes 
Combining the results of $ 3  and $4, we are now able to calculate Q and $ 

approximately by suitably summing rotation angles of all contributing disclination 
lines (details will be published elsewhere). Simple planar N" structures confined to 
cylindrical cavities for so =0, 1, 2, - 1 and - 1/2 are shown in figures 6 to 10 in two 
versions with planar anchoring (a ,  b) and one with homeotropic anchoring (c). In the (a)  
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ty 

ty 

Figure 6. s,=O. The structure with no central disclination line and two additional x 
disclination lines with strength s =  1/2 each. The director field in the two (x, y )  cross- 
sections (a) and (b) is rotated through + 4 2  from the lower to the upper cross-section. (For 
more general information on figures 6 to 10 see the beginning of 5 5). 
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Chiral nematics in cylindrical cavities 1707 

Figure 7. so= 1. The structure with a displaced central disclination line and no additional x 
disclination lines. In figure (a) the x disclination line is in the bulk and non-singular. In 
figure (b),  the anchoring is planar and the surface disclination line is non-singular. In 
figure (c) the anchoring is homeotropic and the surface x disclination line is singular. The 
director field in the two (x. y )  cross-sections is rotated through + 742 from the lower to the 
upper cross-section. 
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ty 

t* 

Figure 8. so = 2. The structure with two additional x disclination lines with strength s = - 1/2 
each. The central disclination line is non-singular in all three figures+), (b)  and (c). The 
director field in the two (x, y )  cross-sections is rotated through - 7c/2 from the lower to the 
upper cross-section. 
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version, the additional x disclination lines are bulk disclination lines, in the (b) and (c) 
versions the additional x disclination lines are surface disclination lines. In the (b) 
versions, surface disclination lines can be non-singular in the director field, because the 
planar anchoring on the surface does not prevent the escape. In the (c) versions, surface 
disclination lines are singular, because the homeotropic anchoring prevents the escape. 
In all these figures, the z axis is along the tube axis and the x and y axes are normal to it. 
The full lines with two arrow heads are connecting pairs of lines parallel to the x axis: 
one on the (x, y )  cross-section and one on the (x, z) cross-section. One such pair of cross- 
section lines represents one line in space. The (x, z) cross-section presents one N* pitch 
of the tube and the two (x,y) cross-sections are a quarter of the cholesteric pitch apart. 
Positions of singular x disclination lines are marked with black points. The N* wave 
number is positive, and results in the right hand rotation of the director field. 

The structure with so = 0, which has no central disclination line (qo = qz, M = 2, 
s= 1/2, see figure 6) is twisted through the same angle and in the same sense as the 
undeformed N* phase structure. The two additional x (s = 1/2) disclination lines form a 
double spiral around the symmetry axis of the tube. If the two additional x disclination 
lines are on the surface, they become s = l  lines and for a planar surface 
anchoring (see figure 6 (b)), the director field around them is non-singular as described 
in 0 4 (see figure 5 (a)). 

As discussed in Q 3, in the structure with so = 1 (qo = qz, M = 0, see figure 7), the 
central disclination line is displaced from the symmetry axis of the tube and there are no 
additional x disclination lines. Since any structure around the so = 1 disclination line is 
axially symmetric without external constraints, there are many different structures 
around such a line. Two director fields can be seen in figure 5 (a): the upper one is the 
concentric structure and the lower one is the radial structure. The concentric structure 
around the so = 1 disclination line displaced from the tube axis can be seen in figures 
7 (a) and (b) and a radial structure can be seen in figure 7 (c). At the tube axis, there is no 
disclination line, therefore the structure as a whole rotates as qz (see expression (8 b)). 
For planar anchoring, the x disclination line either in the bulk (see figure 7 (a)) or on the 
surface (see figure 7(b)) can have a non-singular director field. The same is true for 
homeotropic anchoring and the x disclination line in the bulk, but for homeotropic 
anchoring and the x disclination line on the surface, escape is not possible (see figure 
7 (c)). With a x disclination line on the surface, the director field is similar to the director 
field of the s = 2  bulk x disclination line shown in figure 5(b). 

In the structure with so = 2, there are three x disclination lines (qo = - qz, M = 2, 
s = - 1/2, see figure 8). The central disclination line has strength so = 2 with a possible 
non-singular director field. The structure as a whole rotates through the same angle, 
but in the opposite sense compared to the N* twist of the director field in an 
undeformed N* phase structure. The behaviour of additional s=  - 1/2 x disclination 
lines is similar to the behaviour of additional x disclination lines in the structure with no 
central disclination line (so=O). In the bulk (see figure 8(a))  and in the case of 
homeotropic anchoring (see figure 8 (c)) they are singular, and on the surface in the case 
of planar anchoring (see figure 8(b) )  they are non-singular. On the surface, the 
director field around them is comparable with the director field around a bulk s = - 1 x 
disclination line as shown in figure 5 (c) and also in figure 9. 

Comparing the free energy of structures allowed by symmetry (expressions (2 d )  and 
(3 b)), two more structures are found to be quite stable: so = - 1 and so = - 1/2. In the 
structure with so = - 1 (qo = 4 2 ,  M = 4, s = 1/2, see figure 9), the director field of the 
central disclination line is non-singular and the four additional (s = 1/2) x disclination 
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lines form a fourfold spiral rotating in the same sense as the N* twist of the director field 
in the undeformed phase, but with a half ofits rate of rotation. In the structure with so = 
- 1/2 (cpo = 3 qz/2,  M = 3, s = 1/2, see figure 10) the singular central disclination line is 
surrounded by the three additional x disclination lines forming a threefold spiral 
rotating in the same sense as the N* twist in the undeformed N* phase, but with a one 
and half times smaller rate. In both structures (with so = - 1 and with so = - l/2 central 
disclination lines), the additional z disclination lines behave in a similar way as in the so 
= 0 case. That is, they have singular director fields in the bulk (s = 1/2) (see figures 9 (a) 
and 10 (a)) and can be non-singular if they are on the surface (s = 1) (see figures 9 (b) and 
(c), IO(b) and lO(c). 

6. Discussion and comparison with experimental results [l-31 
This contribution is based almost entirely on geometry and symmetry arguments. 

The strong anchoring condition on the surface is used to determine possible 2D 
nematic defect combinations in circles cut from N* planes. The N* structures in tubes 
are reproduced by rotating 2D nematic structures so that the director field follows the 
intrinsic N* twist in the major part of the tube. As a result, we have N* structures 
without a straight x disclination line at the symmetry axis of the tube for so = O  and 1 ,  
and with,a straight line for all other values of so. For so # 1, additional x disclination 
lines spiralling around the symmetry axis of the tube are predicted. The main feature of 
these model structures, the spiralling of additional x disclination lines, has been studied 
experimentally a long time ago [l], but no consistent theoretical explanation has been 
given. Particularly, the structure with no central disclination line (so =0) and the 
structure with a so = 2 central disclination line with additional x disclination lines 
rotating in the opposite sense compared to the twist of director field in the undeformed 
N* phase structure have been observed. Both structures were explained as combin- 
ations of x disclination lines in agreement with our general model. Only the so = 2 
central disclination line was observed occasionally to split into two s=  1 x disclination 
lines. This splitting does not break the symmetry of the so = 2 structure and can be 
explained in the frame of symmetry arguments applied in this contribution. That is, the 
symmetry of the director field around a pair of s = 1 x disclination lines is the same as 
the symmetry of the director field around a s = 2  x disclination line. 

Experimentally [ 11, some structures with many additional x disclination lines were 
observed. These structures may be connected to our model structures with so = - 1 or 
so = - lj2 central disclination lines, but the exact number of disclination lines has not 
been determined. What probably evades description by plain geometry and symmetry 
arguments are cases where additional straight x disclination lines appear. In the 
literature [l], qualitative free energy arguments like a large bend elastic constant close 
to the N*-smectic A phase transition and the lengths of x disclination lines are used to 
explain this phenomenon. Another interesting feature of x disclination lines is the 
possibility of having a non-singular core, if their strength is an integer. An approximate 
minimization of the Frank free energy was performed in [17] and structures similar to 
model pictures presented in [6,9,10] were obtained. These structures are more stable 
than singular structures [ 171 and may explain the appearance of thick disclination lines 
observed experimentally [ 11. The systems with planar anchoring can have the 
escaped director field in the core of the surface disclination lines as well (see figures 
6 (b t lO(h) ,  but in the experiment homeotropic surface anchoring was used to stabilize 
the planar structure and no escape on the surface was possible (corn yare figures 6 ( c t  
10 k)). 
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Chiral nematics in cylindrical cavities 1713 

As already mentioned at the end of Q 3, the planar structures in droplets are very 
similar to planar structures in tubes. Therefore, the model structures developed here can 
be modified [16] to describe planar structures in droplets [2,3,18]. Further models, 
also including gradual formation of planar structures with increasing external electric 
field, offering an explanation of the apparent absence of additional x disclination lines 
in N* droplets, are in progress and will be published elsewhere. 

S. 2. acknowledges partial support from the Science and Technology Center 
ALCOM under grant DMR 89-20147. 
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